A ladle of … steak from the 3D printer

New trends constantly shake up the industry – we are tracking them down. In our series ‘A ladle of ...’ we periodically present exciting projects and personalities from the food and gastronomy scene. Today’s 3-question interview: Eshchar Ben-Shitrit, CEO of Redefine Meat, an Israeli start-up that produces ‘meat’ from plant-based raw materials with the help of a 3D printer.

Redefine meat

What does 3D printing of food actually mean?

In the traditional sense, 3D printing is also known as additive manufacturing. It was originally developed to efficiently translate a computer-generated digital design into a physical shape or form. Although computer simulation has many benefits, there are industries, such as aerospace, furniture and medicine, that require a physical prototype for testing before mass production begins. 

3D printing for food, however, has to focus on more than the physical form. While that is also an important element, texture, taste, nutritional composition, cost and efficiency are much more crucial when it comes to food. That’s why we started with these questions: How can you print texture and flavour? How can we take ingredients with taste and texture X, and use 3D printing to create taste and texture Y? 

Can you explain this in more detail with an example?

Sure! Let’s take a steak as an example. From a technical point of view, a steak is a complex structure, a matrix made up of different components. So we divided the components into muscle, fat and blood. These are plant-based alternatives. They consist of commercially available ingredients such as soy and pea protein, chickpeas, beetroot, nutritional yeast and coconut fat. But if we just mix them together, we end up with a useless paste. We have to arrange the components in a certain way, for example blood and fat surrounded by muscle in a specific ratio.
Both steps together allow us to create a 3-dimensional model in which each component is placed in a specific location. This way, we can build a database with various combinations and experiment with them to achieve the desired properties. How does sirloin differ from rib-eye in terms of component placement? How do texture, taste, cooking behaviour or colour change when we re-arrange the components?
We use 3D printing to develop a product with specific mechanical properties that nobody but the cow knows how to make. 

What are the challenges of 3D food printing? 

The first challenge is the complexity of the printing. Until recently, there were only 3D printers that could process either multiple components or a high viscosity. But we combine both. We really had to explore new ground here.
The second aspect is food safety, because people eat the 3D-printed product. That means that we need regulatory approval for all markets we enter.
The third aspect is cost and efficiency. As previously mentioned, 3D printing was originally designed for the production of prototypes. Cost and time are less relevant in this context. But with food, we want to end up eating the model – and a lot of it. So we have to be fast and produce on a large scale.

 

Redefine Meat: meat substitute from the 3D printer

Deceptively real meat to enjoy

A plant-based meat substitute that tastes like real meat? Absolutely. So say the inventors of Redefine Meat.

About Redefine Meat

Redefine Meat was founded in Israel in 2018 and produced the world’s first plant-based 3D-printed steak in the same year. This makes the company one of the pioneers among those tackling 3D printing of whole plant-based elements. The Israeli company now operates in many European cities, including Paris, Berlin and Amsterdam. 
With its current technology, the company can produce 10 kg of food-grade 3D-printed meat within an hour. 

Redefine Meat

Further articles